
An Empirical Evaluation of GPGPU
Performance Models

S. Madougou, A. Varbanescu, C. de Laat and R.
van Nieuwpoort

Hetero-Par 2014, Porto, Portugal

August 25, 2014 Madougou et al.: On Performance Models 2

Motivation

● Ubiquity of parallel hardware (multicore, manycore, clusters, grid,
clouds)

● Promise of very high performance but very challenging to achieve
– Peak performance requires hardware specific features
– Exploration of large design and optimization space

● Performance modeling to help high performance “affordability”
– Systematic and portable vs in-house expertise and per case

● GPUs as the most common parallel architectures

August 25, 2014 Madougou et al.: On Performance Models 3

GPU execution model

August 25, 2014 Madougou et al.: On Performance Models 4

GPU performance factors

● Maximize parallel execution
– More independent work in a thread (ILP)
– More concurrent threads (TLP)
– More independent memory accesses (MLP)
– Good utilization of the hardware (occupancy)

● Maximize memory throughput
– Memory coalescing and access patterns
– Shared memory bank conflicts and access patterns
– Caching effects

● Maximize instruction throughput
– Instruction mix, instruction serialization

August 25, 2014 Madougou et al.: On Performance Models 5

GPU performance modeling

● Model = application model + hardware model
● Accuracy of prediction
● Evaluation speed
● Easy model construction and evaluation
● Capture of salient performance factors
● Performance bottlenecks highlighting

August 25, 2014 Madougou et al.: On Performance Models 6

Evaluating 7 GPGPU models

● Trend setters and/or promising
● Simple benchmark: dense matrix multiplication

– From CUDA SDK for MxM square matrices
– Uses BxB block matrices, M multiple of B
– Optimized by use of shared memory
– Memory-bound kernel

August 25, 2014 Madougou et al.: On Performance Models 7

PMAC framework [1]

● PMAC: performance analysis of distributed
systems

● Extension with tools to handle heterogeneity
● Based on idioms recognition and modeling
● Uses micro-benchmarking and binary

instrumentation
● Tested on a few idioms on GPUs, acc 80-90%

August 25, 2014 Madougou et al.: On Performance Models 8

PMAC evaluation I

● PMAC estimates only memory operations
● (1)
● MemBWstream regression model built per

accelerator using micro-benchmarking
●

MemTime=∑
i

allBB MemRef i , j×RefSize
MemBW stream

MemBW stream(s)=−0.0020×max (0,3072−s)+0.0003×max (0, s−3072)+7.0709

August 25, 2014 Madougou et al.: On Performance Models 9

PMAC evaluation II

August 25, 2014 Madougou et al.: On Performance Models 10

Eiger framework [2]

● Automated statistical methodology to model program
behavior on different architectures (CPU+GPU)

● Synthesizes performance models through:
– Experimental data acquisition and DB construction
– Series of data analysis passes (PCA)
– Model selection and construction

● Captures major performance factors (47 metrics)
● Software toolchain (simulator) poorly documented
● Validation on 12 benchmarks from CUDA SDK

August 25, 2014 Madougou et al.: On Performance Models 11

Eiger evaluation

Eiger metric Performance counter

Memory efficiency (gld_eff+gst_eff) / 2

Memory intensity ldst_exec / inst_exec

Memory sharing Code analysis

Activity factor CUDA occupancy

SIMD/MIMD Exec configuration

DMA size Code analysis

August 25, 2014 Madougou et al.: On Performance Models 12

STARGAZER framework [3]

● Automated GPU performance exploration
– Sparsely and randomly samples the parameter values of

the full GPU design space
– Simulates or measures values for each parameter
– Uses stepwise regression to find the most influential

parameters to performance
● Interactions between parameters modeled
● Validation with benchmarks (accuracy ~99%)

August 25, 2014 Madougou et al.: On Performance Models 13

STARGAZER evaluation

● STARGAZER only considers hardware characteristics (design
space pruning)

● No application metrics s.a. bank conflicts nor flow divergence
● Uses GPGPU-Sim to collect parameter values

– It can take days to gather experimental data
● Direct measurements as alternative but challenging
● Predicts GPGPU-Sim times reasonably well

– Simulated times order of magnitude different from actual times

August 25, 2014 Madougou et al.: On Performance Models 14

WFG modeling tool [4]

● Kernel execution time based on its work flow graph
(WFG)

● The WFG is built from kernel dependence graph
(both control flow + data dependence)

● Both transition and dependence arcs are labeled
with cycles estimates

● Captures major performance factors (-caching)
● Validation with 4 kernels with good accuracy

August 25, 2014 Madougou et al.: On Performance Models 15

WFG evaluation

WFG metric Performance
counter

LatencyBW (1-sm_eff) x
stall_data_req /

(warps x cyc_sm)

CYCcompute inst_wp x CPI

NUMmem gld_req + gst_req

CYCmem NUMmem x WS x
bw_sm / warps

August 25, 2014 Madougou et al.: On Performance Models 16

MWP-CWP analytical model [5]

● Performance model built from 2 metrics
– Memory warp parallelism (MWP)
– Compute warp parallelism (CWP)

● Model based on 17 hardware and application
parameters

● Parameters extracted either from hardware
spec or source and PTX code

● Validation on 2 Nvidia GPUs

August 25, 2014 Madougou et al.: On Performance Models 17

MWP-CWP evaluation

● Evaluation attempt of the model on newer GPU
● 5 of the 17 parameters require micro-benchmarking

but benchmark suite deprecated by authors
● Using approximation of those parameters leads to

far off results
● Recalibration for new hardware and in-depth

analysis for new applications code
● The model only predicts execution time, no

bottlenecks highlighting

August 25, 2014 Madougou et al.: On Performance Models 18

GPU à la PRAM [6]

● Analytical mode based on BSP and PRAM
● The model uses 7 platform parameters and 6 application

parameters
● Execution time estimated by “mapping” the dataset on

the threads and evaluating cycles
● Application characterization (cycles per thread) done by

calibration or source code analysis
● Validation on few applications with good accuracy

August 25, 2014 Madougou et al.: On Performance Models 19

GPU à la PRAM evaluation

● Evaluation on a GTX480 with good
accuracy (3-10% error)

● Evaluation on a GT-Titan with bad accuracy
(30-70% error)

● Calibration of the model for new
applications is tedious

● So is analyzing applications with complex
data items to threads mapping

August 25, 2014 Madougou et al.: On Performance Models 20

A quantitative analysis [7]

● The model first measures everything about the hardware
● Then, application model expressed in terms of

consumption of the hardware resources
● Bottlenecks are detected by hardware resources usage

within execution time
● Application model is a detailed breakdown of the

instructions in the code
● Validation on benchmarks with accuracy within 15%

August 25, 2014 Madougou et al.: On Performance Models 21

A quantitative analysis evaluation

● Evaluation of the model requires the benchmark
suite not available

● Shared and global memory analysis performed
on non-cache architectures -> code
instrumentation cache-aware?

● The model gives insight into causes of
performance behavior

● Unsure whether the approach will work when
caches plays an important role

August 25, 2014 Madougou et al.: On Performance Models 22

Conclusion and future work

● An overview of current GPGPU performance
modeling landscape

● Description and evaluation of 7 models
● Results certainly improvable with proper doc
● Extension into a comprehensive survey using

benchmark suite

August 25, 2014 Madougou et al.: On Performance Models 23

References

[1] Allan Snavely, Laura Carrington, Nicole Wolter, Jesus Labarta, Rosa Badia, and Avi Purkayastha. A framework for
performance modeling and prediction. In Proceedings of SC '02, pages 1{17, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press

[2] Andrew Kerr, Eric Anger, Gilbert Hendry, and Sudhakar Yalamanchili. Eiger: A framework for the automated synthesis
of statistical performance models. In Proceedings of WPEA 2012, 2012.

[3] Wenhao Jia, K.A. Shaw, and M. Martonosi. Stargazer: Automated regression-based gpu design space exploration. In
ISPASS 2012, pages 2{13, April 2012.

[4] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D. Gropp, and Wen-mei W. Hwu. An adaptive
performance modeling tool for gpu architectures. SIGPLAN Not., 45(5):105{114, January 2010.

[5] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu architecture with memory-level and thread-level
parallelism awareness. SIGARCH Comput. Archit. News, 37(3):152{163, June 2009.

[6] K. Kothapalli, R. Mukherjee, M.S. Rehman, S. Patidar, P. J. Narayanan, and K. Srinathan. A performance prediction
model for the cuda gpgpu platform. In HiPC 2009, pages 463{472, Dec 2009.

[7] Yao Zhang and J.D. Owens. A quantitative performance analysis model for gpu architectures. In HPCA 2011, pages
382{393, Feb 2011.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

