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Motivation

● Ubiquity of parallel hardware (multicore, manycore, clusters, grid, 
clouds)

● Promise of very high performance but very challenging to achieve
– Peak performance requires hardware specific features
– Exploration of large design and optimization space

● Performance modeling to help high performance “affordability”
– Systematic and portable vs in-house expertise and per case

● GPUs as the most common parallel architectures
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GPU execution model
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GPU performance factors

● Maximize parallel execution
– More independent work in a thread (ILP)
– More concurrent threads (TLP)
– More independent memory accesses (MLP)
– Good utilization of the hardware (occupancy)

● Maximize memory throughput
– Memory coalescing and access patterns
– Shared memory bank conflicts and access patterns
– Caching effects

● Maximize instruction throughput
– Instruction mix, instruction serialization
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GPU performance modeling

● Model = application model + hardware model
● Accuracy of prediction
● Evaluation speed
● Easy model construction and evaluation
● Capture of salient performance factors
● Performance bottlenecks highlighting 



August 25, 2014 Madougou et al.: On Performance Models 6

Evaluating 7 GPGPU models

● Trend setters and/or promising
● Simple benchmark: dense matrix multiplication

– From CUDA SDK for MxM square matrices
– Uses BxB block matrices, M multiple of B 
– Optimized by use of shared memory
– Memory-bound kernel
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PMAC framework [1]

● PMAC: performance analysis of distributed 
systems

● Extension with tools to handle heterogeneity
● Based on idioms recognition and modeling
● Uses micro-benchmarking and binary 

instrumentation
● Tested on a few idioms on GPUs, acc 80-90%
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PMAC evaluation I

● PMAC estimates only memory operations
●                                              (1)
● MemBWstream regression model built per 

accelerator using micro-benchmarking
●

MemTime=∑
i

allBB MemRef i , j×RefSize
MemBW stream

MemBW stream(s)=−0.0020×max (0,3072−s)+0.0003×max (0, s−3072)+7.0709
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PMAC evaluation II
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Eiger framework [2]

● Automated statistical methodology to model program 
behavior on different architectures (CPU+GPU)

● Synthesizes performance models through:
– Experimental data acquisition and DB construction
– Series of data analysis passes (PCA)
– Model selection and construction

● Captures major performance factors (47 metrics)
● Software toolchain (simulator) poorly documented
● Validation on 12 benchmarks from CUDA SDK
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Eiger evaluation

Eiger metric Performance counter

Memory efficiency (gld_eff+gst_eff) / 2

Memory intensity ldst_exec / inst_exec

Memory sharing Code analysis

Activity factor CUDA occupancy

SIMD/MIMD Exec configuration

DMA size Code analysis
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STARGAZER framework [3]

● Automated GPU performance exploration
– Sparsely and randomly samples the parameter values of 

the full GPU design space
– Simulates or measures values for each parameter
– Uses stepwise regression to find the most influential 

parameters to performance
● Interactions between parameters modeled
● Validation with benchmarks (accuracy ~99%)
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STARGAZER evaluation

● STARGAZER only considers hardware characteristics (design 
space pruning)

● No application metrics s.a. bank conflicts nor flow divergence
● Uses GPGPU-Sim to collect parameter values

– It can take days to gather experimental data
● Direct measurements as alternative but challenging
● Predicts GPGPU-Sim times reasonably well

– Simulated times order of magnitude different from actual times
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WFG modeling tool [4]

● Kernel execution time based on its work flow graph 
(WFG)

● The WFG is built from kernel dependence graph 
(both control flow + data dependence)

● Both transition and dependence arcs are labeled 
with cycles estimates

● Captures major performance factors (-caching)
● Validation with 4 kernels with good accuracy
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WFG evaluation

WFG metric Performance 
counter

LatencyBW (1-sm_eff) x 
stall_data_req / 

(warps x cyc_sm)

CYCcompute inst_wp x CPI

NUMmem gld_req + gst_req

CYCmem NUMmem x WS x 
bw_sm / warps



August 25, 2014 Madougou et al.: On Performance Models 16

MWP-CWP analytical model [5]

● Performance model built from 2 metrics
– Memory warp parallelism (MWP)
– Compute warp parallelism (CWP)

● Model based on 17 hardware and application 
parameters

● Parameters extracted either from hardware 
spec or source and PTX code

● Validation on 2 Nvidia GPUs
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MWP-CWP evaluation

● Evaluation attempt of the model on newer GPU
● 5 of the 17 parameters require micro-benchmarking 

but benchmark suite deprecated by authors
● Using approximation of those parameters leads to 

far off results
● Recalibration for new hardware and in-depth 

analysis for new applications code
● The model only predicts execution time, no 

bottlenecks highlighting
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GPU à la PRAM [6]

● Analytical mode based on BSP and PRAM
● The model uses 7 platform parameters and 6 application 

parameters
● Execution time estimated by “mapping” the dataset on 

the threads and evaluating cycles
● Application characterization (cycles per thread) done by 

calibration or source code analysis
● Validation on few applications with good accuracy
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GPU à la PRAM evaluation

● Evaluation on a GTX480 with good 
accuracy (3-10% error)

● Evaluation on a GT-Titan with bad accuracy 
(30-70% error)

● Calibration of the model for new 
applications is tedious

● So is analyzing applications with complex 
data items to threads mapping
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A quantitative analysis [7]

● The model first measures everything about the hardware
● Then, application model expressed in terms of 

consumption of the hardware resources
● Bottlenecks are detected by hardware resources usage 

within execution time
● Application model is a detailed breakdown of the 

instructions in the code
● Validation on benchmarks with accuracy within 15%
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A quantitative analysis evaluation

● Evaluation of the model requires the benchmark 
suite not available

● Shared and global memory analysis performed 
on non-cache architectures -> code 
instrumentation cache-aware?

● The model gives insight into causes of 
performance behavior

● Unsure whether the approach will work when 
caches plays an important role 
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Conclusion and future work

● An overview of current GPGPU performance 
modeling landscape

● Description and evaluation of 7 models
● Results certainly improvable with proper doc
● Extension into a comprehensive survey using  

benchmark suite
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